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BRD2 (RING3) Is a Probable Major Susceptibility Gene for Common
Juvenile Myoclonic Epilepsy

Deb K. Pal,"*" Oleg V. Evgrafov,”" Paula Tabares,” Fengli Zhang,* Martina Durner,'
and David A. Greenberg'?>’*

'Division of Statistical Genetics, Department of Biostatistics, Mailman School of Public Health, *Department of Psychiatry, and *Columbia
Genome Center, Columbia University, and *Clinical and Genetic Epidemiology Unit, New York State Psychiatric Institute, New York

Juvenile myoclonic epilepsy (JME) is a common form of generalized epilepsy that starts in adolescence. A major
JME susceptibility locus (EJM1) was mapped to chromosomal region 6p21 in three independent linkage studies,
and association was reported between JME and a microsatellite marker in the 6p21 region. The critical region for
EJM1 is delimited by obligate recombinants at HLA-DQ and HLA-DP. In the present study, we found highly
significant linkage disequilibrium (LD) between JME and a core haplotype of five single-nucleotide—polymorphism
(SNP) and microsatellite markers in this critical region, with LD peaking in the BRD2 (RING3) gene (odds ratio
6.45; 95% confidence interval 2.36-17.58). DNA sequencing revealed two JME-associated SNP variants in the
BRD2 (RINGS3) promoter region but no other potentially causative coding mutations in 20 probands from families
with positive LOD scores. BRD2 (RING3) is a putative nuclear transcriptional regulator from a family of genes
that are expressed during development. Our findings strongly suggest that BRD2 (RING3) is EJM1, the first gene
identified for a common idiopathic epilepsy. These findings also suggest that abnormalities of neural development
may be a cause of common idiopathic epilepsy, and the findings have implications for the generalizability of proposed
pathogenetic mechanisms, derived from diseases that show Mendelian transmission, to their complex counterparts.

Introduction

The epilepsies comprise an enormous diversity of dis-
orders of heterogeneous etiology, manifestation, and
prognosis. Almost half of all epilepsies have some genetic
basis (Annegers et al. 1996), but only a small proportion
appear to display Mendelian inheritance. Many of our
current beliefs about the molecular and cellular mecha-
nisms in epilepsy derive from these examples, which are
based on rare, large pedigrees. Such pedigrees received the
most attention because they have been the simplest to
study genetically. Although mutations in genes for ion
channels, neuroreceptors, and neurotransmitters have
been demonstrated in such rare, densely affected epilepsy
pedigrees (Mulley et al. 2003), the forms of epilepsy com-
monly seen in the clinic show neither the specific muta-
tions nor any other mutations in genes identified in those
pedigrees (Harkin et al. 2002; Kananura et al. 2002; au-
thors’ unpublished data). In contrast to the rare Men-
delian pedigrees, the common forms of idiopathic gen-
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eralized epilepsy (IGE) have a complex inheritance, even
though the IGEs are thought to have an exclusively genetic
basis (Greenberg et al. 1992). Not only do population
studies (Tsuboi and Christian 1973; Beck-Mannagetta
and Janz 1991) suggest an oligogenic mode of inheritance
with interaction between loci, but a genome scan of in-
dividuals with adolescent-onset IGE demonstrated strong
evidence of linkage to several loci, combinations of which
may lead to specific epilepsy syndromes (Durner et al.
2001). It seems unlikely that single gene mutations are
sufficient to explain the molecular mechanisms for epi-
lepsies with this model of complex inheritance.

Juvenile myoclonic epilepsy (JME [MIM 254770]) is
one of the most easily recognized IGEs of adolescence,
diagnosable by the occurrence of bilateral, upper-limb
myoclonic jerks on awakening (Janz and Christian 1957).
Studies of three separate family collections have reported
significant evidence of linkage between JME and the
major susceptibility locus EJM1 at chromosome 6p21,
designated “EJM1” (Greenberg et al. 1988b; Durner et
al. 1991; Weissbecker et al. 1991; Sander et al. 1997;
Greenberg et al. 2000). In addition to linkage, there is
evidence of allelic association in this region, with a mi-
crosatellite allele located in the HLA class Il region. This
microsatellite is located in an intron of the BRD2
(RING3) gene (Greenberg et al. 2000). Recombination
mapping in families with JME has delimited the bound-
aries of EJM1 to a 1-cM region between the HLA-DQ

261



262

and HLA-DP (DQ-DP) loci (Sander et al. 1997; Green-
berg et al. 2000). In the present study, we aimed to
confirm and further refine gene localization of EJM1
and to search for molecular variants that might explain
JME susceptibility in a complex genetic model.

Families and Methods

Study Design

Our earlier studies suggested that EJM1 was located
between DQ and DP (Sander et al. 1997; Greenberg et
al. 2000), so we first sought evidence of association be-
tween JME and single SNP marker alleles in this region.
Then, to increase informativeness of markers, we recon-
structed two-locus haplotypes from data on consecutive
SNPs. We performed case-control analysis, using these
haplotypes, and, to guard against possible population
stratification, we confirmed positive haplotype associa-
tions, using intrafamilial controls (untransmitted alleles)
in haplotype relative-risk analysis (Falk and Rubenstein
1987). Next, we searched for a common risk haplotype
in families with positive LOD scores in the EJM1 region.
Finally, we searched for mutations by sequencing exons
and promoter sequences in BRD2 and adjacent genes
that showed significant linkage disequilibrium (LD) with
JME.

Families

We collected probands with JME and their families
from physicians’ practices, as described elsewhere (Green-
berg et al. 2000). We selected probands with typical forms
of JME, in accordance with international classification
guidelines (Commission on Classification and Terminol-
ogy of the International League Against Epilepsy 1989).
Twenty parent-offspring trios from families with positive

LOD scores (>0.1) at both of two EJM1 microsatel-

lite markers, DQB1 and DRB1, were designated as the
“EJM1" set.” LOD scores for EJM1* families were
0.15-1.50, with a mean of 0.38. Alleles and haplotypes
of probands in the EJM17" set were used as case data in
the case-control analysis to find associations. Transmit-
ted and untransmitted alleles and haplotypes in the
EJM1* set were also used in transmission/disequilibrium
testing. Institutional review board approval for this
study was obtained from the appropriate institutions.
All participating patients and family members gave their
informed consent.

Controls

We used three control groups: The first consisted of
53 JME parent-offspring trios with negative LOD scores
at EJM1 markers (EJM17), collected at the same time
and from the same population as EJM17 families. The
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second comprised laboratory controls, which consisted
of 64 carriers of Wilson disease or spinal muscular at-
rophy from the Columbia Genome Center. We used the
epilepsy control group because it represented a popu-
lation similar to that from which the EJM17" case set
was drawn, thus safeguarding against the possibility of
selection bias in the case-control analysis. One theoret-
ical disadvantage of using the epilepsy control group is
the possibility of over-matching (i.e., an association can-
not be demonstrated because case and control groups
with JME might share too many allelic similarities at
adjacent markers). We therefore used the laboratory con-
trols as a second control group to check for over-match-
ing in case-control analysis. Finding significant LD using
each of the two control groups would therefore dem-
onstrate that associated alleles or haplotypes are neither
specific to populations with epilepsy nor a result of se-
lection bias. Third, we used untransmitted alleles in the
EJM1" set as internal controls for EJM1* transmitted
alleles in haplotype relative-risk analysis.

DNA Preparation

DNA was purified from blood or lymphoblastoid cell
lines, using the Puregene kit (Gentra Systems) according
to the manufacturer’s protocols. PCR amplification for
all fragments was performed on either an MJ Research
Tetrad thermal cycler or a Hybaid MultiBlock System
under the following conditions: 32 cycles at 94°C for 2
min, with denaturation at 94°C for 30 s, annealing at
56°C for 30 s, and an extension at 72°C for 45 s, fol-
lowed by a final extension at 72°C for 4 min.

SNP Discovery

We selected >50 SNPs from the National Center for
Biotechnology Information (NCBI) database, but not all
of these SNPs were found in our samples. We also iden-
tified new SNPs by DNA sequencing of the region, which
we entered into the NCBI database. Ultimately, we were
able to use 20 SNPs for association analysis, all from
the DQ-DP region and with minor allele frequency
>10%. The location of these SNPs, in relation to known
genes in this region, is shown in figure 1 (top). The
genomic structure of BRD2 (RING3) and the CA repeat
microsatellite in BRD2 (RING3), with which we had
previously demonstrated association, is shown in figure
1 (bottom).

SNP Genotyping

Fluorescence polarization analysis of previously de-
scribed mutations and polymorphic sites found during
this study was done using the AcycloPrime-FP SNP de-
tection kit (Perkin Elmer Life Sciences) according to
the manufacturer’s protocol. Fluorescence measure-
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Figure 1 DQ-DP region on human chromosome 6, SNP markers, and genomic structure of BRD2 (RING3). Top, arrows along the
chromosome denote genes, which are labeled, and their direction of transcription; asterisks denote SNP markers. Bottom, BRD2 (RING3) gene
exploded to show the relation of the exonic sequences with SNPs, the CA repeat microsatellite, and other DNA variations.

ments were performed on fluorescence microplate an-
alyzer (LJL BioSystems).

Sequencing and Mutation Analysis

Sequences of coding and promoter regions of BRD2
(RING3), PPP1R2P1, DMA, DMB, and DNA genes were
determined on the ABI 310 automated sequencer using
the ABI Tag2 sequencing kit according to the manufac-
turer’s protocol. Presequencing PCR clean-up was done

by enzymatic degradation of primers and dNTPs, using
exonuclease I and shrimp alkaline phosphatase cocktail.

Statistical Analysis

We first performed unmatched case-control analyses
on single SNPs, generating odds ratios (ORs) with
95% Cls. To increase informativeness of the markers,
we then generated consecutive two-locus haplotypes,
reconstructing haplotypes from genotypic data, using
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Table 1
Case-Control Analysis of Single SNPs
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b FREQUENCY IN
DISTANCE - -
MARKER? (bp) LOCATION ALLELE  EJM1*  Control OR (95% CI)*
rs11244 0 HLA-DOB Clt .82 .75 1.51 (.61-3.68)
rs241441 5,070 ABCB3 Clt 40 37 1.15 (.56-2.36)
rs1057141 37,989 ABCB2 Gla .85 .84 1.09 (.41-2.85)
rs1044244 44,329 PSMB9 Tlc 28 26 1.08 (.49-2.38)
rs241412 80,879 T/g 43 .34 1.44 (.70-2.97)
rs10751 121,762 HLA-DMB Tlc 25 .13 2.14 (.90-5.08)
rs2071556 123,780 HLA-DMB Cla 55 .36 2.19 (1.07-4.50
rs206787 162,081 BRD2 promoter T/a .53 .33 2.21 (1.08-4.52
rs3918149 162,216 BRD2 promoter T/c 29 .13 2.80 (1.19-6.64
rs620202 161,048 BRD2 intron 1 G/t .85 72 2.16 (.85-5.46)
rs516535 161,524 BRD2 exon 2 Clt 48 31 2.05 (1.00-4.22
rs635688 162,370 BRD2 intron 2 Tlc .53 .34 2.16 (1.05-4.42)
rs2066741 163,304 BRD?2 intron 5 Tlc .68 45 2.51 (1.20-5.24
rs206781 165,351 BRD2 exon 9 Tlc .70 .65 1.27 (.59-2.69)
rs206777 171,733 Clt .50 .30 2.29 (1.11-4.71
rs497058 176,049 Tlc 51 .34 2.08 (1.01-4.28)
rs1044429 191,853 Clt .85 .81 1.33 (.51-3.44)
rs2581 193,612 HLA-DNA Tlg 43 .33 1.48 (.72-3.05)
rs365066 194,349 HLA-DNA Tlc 40 .33 1.35 (.65-2.80)
rs375256 195,031 HLA-DNA Tlc .79 75 1.22 (.50-2.99)

* Markers are listed in order from DQ to DP.

® Distances are measured from the first SNP marker, rs11244.

© Statistically significant associations are underlined. These associated SNPs span the HLA-DMB

gene, the BRD2 (RING3) gene, and promoter region.

GENEHUNTER (Kruglyak et al. 1996). We compared
allele (for single SNPs) and two-locus haplotype fre-
quencies in the EJM1™" set with frequencies in two sep-
arate control groups: EJM1~ families and nonepilepsy
controls. We used both case-control analysis and the
haplotype relative risk (HRR) design (Falk and Ruben-
stein 1987) to test for LD. The HRR method eliminates
potential population stratification, which might occur if
underlying allele frequencies differed in the case and con-
trol populations from which the families were drawn.
However, the HRR design, which is restricted to one
control per case, has lower statistical power to detect an
association than does the case-control analysis, which
uses roughly three controls per case. After finding two-
locus associations, we identified a longer common risk
haplotype spanning five SNP and microsatellite markers.
We calculated ORs of association for the common core
haplotype and computed the power of our data set to
detect this association, under the assumption of a two-
sided type I error rate of 5%. All analyses were per-
formed using Stata for Macintosh (StataCorp 1996).
We used computer simulation (Greenberg et al. 1999)
to assess the true significance of two-locus haplotype
associations (i.e., type I error). Computer simulation of-
fers a more realistic estimate than does conventional
Bonferroni correction. In this genetic context, Bonfer-
roni correction gives an overly conservative estimate of
type I error, because it does not take into account the

nonindependence of adjacent alleles in the presence
of LD. In the simulation, we randomly generated 20
equally spaced biallelic markers that incorporate known
LD in the DQ-DP region. We assumed no recombination
between the markers and no association with disease.
We simulated 10,000 data sets of case and control fam-
ilies, each data set being the same size as the EJM1* and
control sets, and we analyzed the resulting simulated
data exactly as we analyzed our actual data. We counted
the number of data sets in which one marker, or a con-
secutive two-locus or longer haplotype, showed random
association with disease in these 10,000 data sets, to
determine an empirical and more realistic P value for
our case-control analyses.

Results

LD with IME

Single-SNP case-control analyses suggested eight al-
lelic associations in the DQ-DP region. These all oc-
curred in or adjacent to the BRD2 (RING3) gene and
its promoter region (table 1). Case-control analyses us-
ing consecutive two-locus haplotypes confirmed single
SNP analysis findings. The results were similar whether
the EJM1~ set or the nonepilepsy set was used as a
control. We found three almost-consecutive JME-asso-
ciated two-locus haplotypes spanning ~41 kb of the DQ-
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Odds ratio or haplotype relative risk
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LD across the EJM1 region. Curves depict the change in two-locus HRR (squares), and ORs against EJ]M 17 controls (¢riangles)

or nonepilepsy controls (circles) at points along the critical region. Each symbol denotes the association at the midpoint between two adjacent
SNPs; data points are shown joined by a continuous line. The approximate location of genes is shown along the X-axis. Exact values for relative
risk and ORs are given in table 2. Note the sharp increase in LD around the BRD2 (RING3) gene and promoter SNPs.

DP region. This region included BRD2 (RING3) and
HLA-DMB genes (table 2 and fig. 2). Simulations, which
incorporated the known LD in the region and the SNP
allele frequencies, showed that the association with two
consecutive SNP markers was highly significant (P <
.0016). Further, the association with three consecutive
two-locus haplotypes was very highly significant (P <
.0001). In 10 of the 20 EJM1" individuals, haplotype
analysis identified a common core haplotype that was
centered between markers rs620202 telomerically and
rs2066741 centromerically, a distance of 2,256 bp. A
further five individuals had a similar haplotype, differing
by only one allele; the remaining five individuals differed
by two or more alleles. This core haplotype was located
in the BRD2 (RING3) gene itself (table 3) and conferred
an increased disease odds of 6.45 (95% CI 2.36-17.58)
in case-control analysis with nonepilepsy controls, 9.58
(95% CI 2.97-30.63) with EJM1~ controls, and 3.89

(95% CI 1.46-10.37) with HRR analysis. Nine of ten
EJM1* individuals were heterozygous for the risk hap-
lotype, which was consistent with our LOD score max-
imization under a dominant model at EJM1 (Greenberg
et al. 2000). Our association findings therefore con-
firmed and refined previous localization of EJM1 by
linkage.

Mutation Detection

So far, none of the common SNPs in coding regions
were predicted to lead to a change in amino acid se-
quence. We had noted that two of the strongly associated
SNPs occurred in the BRD2 (RING3) promoter region,
but with unknown functional significance. In the next
step, we sequenced BRD2 (RING3) and neighboring
genes in the 20 EJM17 probands, searching for altera-
tions of DNA sequence leading to known genetic dis-
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Rare DNA Variations in the BRD2 (RING3) Gene and Promoter Region

NO. OF MUTATIONS PRESENT/

SNP ToTrAL CHROMOSOMES
MARKER Mutation Site? Name  EJM1"T® EJM1* nT¢ EJM1- T® Controls
rs3918148 —-175C-G 2/39 1/29 2/101 3/121
rs3918150 -2C-G 0/39 2/32 0/96 0/125
rs3918144  ¢.145_146GC-TG A49C 1/40 0/32 2/104 2/126
rs1803864  ¢.489C-T V163A 0/36 0/29 0/90 0/123
rs176250 c.712C-T F238L 0/40 1/33 0/103 2/127
rs3918141 c.1339-4C-G 1/40 6/38 3/104 2/128
rs3918143  ¢.1421C->T A474V 1/38 1/30 4/104 0/118
rs12822 c.1498C->T E500X 0/39 0/31 0/103 0/125
rs3918142¢  ¢.1499_1501delAGG  E500del 4/40 1/32 0/104 0/128
rs1049369  ¢.1640G—-A R547K 0/40 0/32 0/104 1/128
mutex10 c.1795G-C A599P 1/40 1/32 3/102 0/103

NoTE.—AIl DNA variants are rare, and no variant is significantly associated with disease.
* Marker coordinates are given as distance from the first nucleotide of BRD2 (RING3) mRNA

(GenBank accession number NM_005104).
® T = transmitted.
¢ nT = nontransmitted.
4 This deletion has a murine homologue.

turbances, such as missense mutations in coding regions,
splice variants, or promoter mutations. We assessed 11
rare DNA variations against the EJM1~ and control sets
(fig. 1 [bottom]): the frequency of variations in EJM1*
sets was not different from control sets (table 3). We
then extended mutation screening to adjacent genes that
were near enough to BRD2 (RING3) to be within the
region implicated by LD mapping and haplotype anal-
ysis. We tested for mutations in all exons and splice
sites of PPP1R2P1, HLA-DMA, and HLA-DMB genes,
which are centromeric to BRD2 (RING3), and HLA-
DNA, which is telomeric to BRD2 (RING3), in four
families with the highest LOD scores for 6p21 markers.
All the DNA variants we found in these genes have been
described elsewhere as SNPs and are thought to be neu-
tral variants. In summary, we found no alternative caus-
ative mutations or polymorphisms by sequencing of
exons and splice sites, but we did find two strongly
associated SNPs in the BRD2 (RING3) promoter region,
which were of uncertain relevance.

Discussion

This is the first study to precisely localize a gene for a
form of idiopathic generalized epilepsy commonly found
in the population. The location of a gene for JME at
chromosome 6p21 was originally discovered by linkage
analysis and confirmed by several independent studies
of the common form of JME (Greenberg et al. 1988b;
Durner et al. 1991; Weissbecker et al. 1991; Sander et
al. 1997). A separate group detected some evidence for
linkage of JME in the HLA region (highest LOD score
1.4) at a high recombination fraction, but it was dis-

missed as not being statistically significant (Whitehouse
et al. 1993). These studies, which involve subjects from
various geographic regions, also provide evidence that
this JME locus is found in several different populations.

The boundaries of the critical region for EJM1 at
6p21 have been delimited, by obligate recombinants in
two families, to a 1-cM region between DQ and DP
(Sander et al. 1997; Greenberg et al. 2000). We have
now demonstrated strong LD between JME and mark-
ers in this critical region. LD peaks at markers within
the BRD2 (RING3) gene and its promoter region, a gene
with which we had previously demonstrated allelic as-
sociation with a microsatellite marker. We have dem-
onstrated that this strong association is unlikely to have
resulted from either chance or population stratifica-
tion. Our findings therefore strongly suggest that BRD2
(RING3) is EJ]M1, a major susceptibility gene for a com-
mon form of JME.

Sequencing of exons, as well as exon-intron bound-
aries, failed to reveal any obvious causative mutations
in the BRD2 (RING3) gene. However, we found two
strongly disease-associated SNP variants in the pro-
moter region, which may lead to altered expression of
BRD2 (RING3). Although the significance of these
promoter variants is as yet uncertain, several lines of
evidence lend support to the suggestion that BRD2
(RING3) is EJM1 and to the likelihood that promoter
variants contribute to disease susceptibility. The local-
izing evidence that ties BRD2 (RING3) to EJM1 is dis-
cussed above; below, we discuss the relevance of an
oligogenic model of inheritance for JME, and we outline
the putative biological role of BRD2 (RING3), showing
that it is a credible candidate gene for JME.
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JME has an age-dependent, variable phenotype that
overlaps with other common forms of adolescent-onset
IGEs. Specifically, JME is defined by the occurrence of
characteristic myoclonic jerks on awakening, but indi-
viduals with JME may also have generalized tonic-clonic
or absence seizure types. Our previous linkage findings
in the adolescent-onset IGEs (Durner et al. 2001) sup-
ported the oligogenic model in which epistatic inter-
actions between loci influenced the expression of these
individual seizure types (Greenberg et al. 1988a). Strong
evidence of linkage (LOD score 4.4 or 5.2 [multipoint
or two-point]) on chromosome 18 suggested that this
locus conferred susceptibility to all adolescent-onset
IGEs, possibly interacting with a modifying locus (EJM1)
on chromosome 6 for myoclonic seizures and with loci
on chromosomes 5 and 8 for nonmyoclonic (generalized
tonic-clonic and absence) seizures (Durner et al. 2001).

Unlike the rare forms of IGE reported in densely
affected pedigrees, the common form of JME is not
a monogenic disorder in which single mutations cor-
relate strongly with disease expression. It is apparent
from the above oligogenic model that a single critical
mutation in BRD2 (RING3), sufficient by itself to cause
disease manifestation, would preclude an interactive role
for other loci and might not be compatible with the com-
plex pattern of inheritance observed in typical families
with JME. A hypothesis more consistent with the known
observations is that a disturbance in the transcription of
BRD2 (RINGS3), which might not have severe conse-
quences by itself, could lead to expression of seizures in
conjunction with genetic variants at interacting loci. Con-
tinuing from this genetic model, one of the interacting
genes is likely to be located within the major susceptibility
locus that we have studied on chromosome 18 (Durner
et al. 2001). To summarize, individual seizure types in
IGE may result from the interaction of genetic variants.
Separate loci are probably insufficient by themselves to
lead to seizure expression, but each contributes to disease
susceptibility. This model is consistent with the observed
pattern of epilepsy and seizure distribution within fam-
ilies of probands with IGE.

To date, assumptions about the function of genes in-
volved in the pathogenesis of IGEs have largely been
drawn from the study of rare, densely affected Men-
delian pedigrees (Mulley et al. 2003). Investigators have
reported simple gene mutations associated with serious
disruption of ion-channel and neuroreceptor function.
So far, we have been unable to find mutations in either
GABRG2 genes or KCNAB1 genes in probands with
common forms of JME or IGE (Evgrafov et al. 2002;
authors’ unpublished data). These negative findings are
in agreement with the original reports of GABRG2 mu-
tations in epilepsy: no additional mutations were found
in affected family members from 10 “GEFS-like” fam-
ilies (Baulac et al. 2001), nor were GABRG2 mutations
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found after screening 200 patients with IGE (Harkin et
al. 2002) and 135 patients with idiopathic absence ep-
ilepsy (Kananura et al. 2002). These findings in rare
pedigrees reinforce our understanding of the role of ion
channels and neuroreceptors in normal signal trans-
mission in the CNS. However, the known role of BRD2
(RING3) and related genes suggests the involvement of
far more complex and sophisticated mechanisms in the
pathogenesis of common forms of IGE than those that
are suggested by reports of pedigrees with Mendelian
transmission of epilepsy.

BRD2 (RING3) belongs to a highly conserved sub-
family of double bromodomain—containing proteins re-
lated to the Drosophila female sterile homeotic (fsh)
gene, which has an important function in development
and appears to interact genetically with the trithorax
locus (Gans et al. 1975, 1980; Digan et al. 1986). There
are four members of the fsh subfamily in mice and hu-
mans, all of which are characterized by the presence of
two bromodomains and an extra-terminal (ET) domain.
The mouse homologue of BRD2 (RING3), first desig-
nated as “Fsrgl,” is expressed ubiquitously but occurs
at its highest levels in ovary, testis, placenta, and hor-
monally modulated epithelia (Rhee et al. 1998). Fsrgl
is also expressed in the mouse embryo, notably in the
developing brain and CNS (Rhee et al. 1998; T. Crow-
ley, K. Rhee, M. Brunori, and D. Wolgemuth, personal
communication). The Fsrgl protein participates in nu-
clear protein complexes that include E2 promoter—
binding factor (E2F) proteins, transactivating the pro-
moters of several important cell cycle genes that are
dependent on E2F (Denis et al. 2000). The localization
of Fsrgl protein on euchromatin is consistent with its
hypothesized function as a transcriptional regulator
(Crowley et al. 2002). A nuclear/cytoplasmic translo-
cation of Fsrgl protein has been observed, both in cul-
tured mouse fibroblasts and in mammary epithelial cells
during the reproductive cycle, correlating with both pro-
liferation and apoptosis (Guo et al. 2000; Crowley et
al. 2002). The rat homologue of RING3 is also induced
during the early stages of programmed neuronal cell
death in experimental conditions (Wang et al. 1997),
suggesting a role in the modeling of the developing ner-
vous system. BRD2 (RING3) shares at least 95% ho-
mology with murine Fsrgl at the protein level and is
expressed in human brain.

Although it has not been extensively studied in hu-
mans (Thorpe et al. 1997), a role for BRD2 (RING3)
in regulating brain development is likely, and errors in
regulation might explain the basis of this form of JME.
The likelihood that BRD2 (RINGS3) plays a role in the
brain is especially interesting in light of evidence of ab-
normal cerebral microanatomy in JME. Neuropatho-
logical studies have shown a diffuse increase of single
dystopic neurons in the stratum moleculare and in the
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subcortical white matter in JME and other idiopathic
generalized epilepsies (Meencke and Janz 1984). Quan-
titative magnetic resonance imaging analysis suggests
an increase in cortical gray matter in the mesial frontal
lobes of living patients with JME, which lends further
support for a pathological mechanism resulting in subtle
cerebral structural abnormality (Woermann et al. 1999).
In the framework of an oligogenic model, we can pos-
tulate that BRD2 (RING3) promoter variants may lead
to abnormal structural and/or functional interaction with
other proteins involved in controlling particular stages of
brain development. The function of BRD2 (RING3) as
a transcriptional regulator is consonant with an inter-
active role in a more complex pathway. Abnormalities
in a developmental pathway might result in neural cell
overgrowth or lack of programmed cell death in specific
regions of the brain. These abnormalities may result in
disorganized neuronal connectivity and regions of neo-
cortical hyperexcitability, leading to clinical seizures, a
mechanism of epileptogenesis already well established in
genetic cortical dysplasias (see Flint and Kriegstein [1997]
for review). Persisting morphological and functional ab-
normalities might also explain the poor prognosis for
seizure remission in JME.

Taken together, the genetic evidence implicating BRD2
(RING3) as EJM1, the oligogenic model of pathogen-
esis for common IGE, and the putative role of BRD2
(RING3) in the development of the CNS strongly sug-
gest that BRD2 (RING3) is EJM1 and that variations
in the initiation of BRD2 (RING3) transcription may
be important in the molecular pathogenesis of JME.
Although the SNP variants in the BRD2 (RING3) pro-
moter do not appear to have a dramatic effect, findings
in other common complex diseases have suggested that
dramatic changes are not the rule. For example, in a
recent study of the common forms of migraine, inves-
tigators found five associated SNPs in the insulin re-
ceptor gene (INSR), which had previously been localized
by linkage (McCarthy et al. 2001). None of the INSR
SNPs affected transcription, translation, or protein ex-
pression. Similarly, SNPs associated with Crohn disease
in the 5q cytokine cluster have not been shown to dis-
rupt either amino acid sequence or the regulatory region
of a known gene (Rioux et al. 2001). Both these studies,
like our own, offer persuasive localizing evidence, but
we must await investigation of interacting genes and
biological pathways to explain the pathogenetic role of
SNP associations.
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